MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية							
Module Title	Engin	Engineering Mechanics (Statics)			Module Delivery		
Module Type		Core			🛛 Theory		ory
Module Code		ENG006	5			🗷 Lect	ure
ECTS Credits		6				🗆 Lab	
SWL (hr/sem)		150				I Tutorial □ Practical □ Seminar	
Module Level	el UGI		Semester of Delivery			2	
Administering Departm	ent	CV101	College	Civil Engineering College		e	
Module Leader	Dr.You	sif Kh.Yousif	e-mail	Yousif.kl	Yousif.kh69@uoanabr.edu.iq		du.iq
Module Leader's Acad.	Title	lecturer	Module L	Iodule Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Dr.Yousif Kh.Yousif		e-mail	Yousif.kh69@uoanabr.edu.iq		du.iq	
Peer Reviewer Name Name		Name	e-mail	mail E-mail			
Scientific Committee Approval 01 Date		01/06/2023	Version Number			1.0	

Relation with other Modules العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	physics	Semester	1	
Co-requisites module	None	Semester		

Modu	Module Aims, Learning Outcomes and Indicative Contents					
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Aims	Fundamental concepts and principles of mechanics, vectors, and force vectors and resultant.					
أهداف المادة الدر اسية	Free body diagram of forces and equilibrium of particles and rigid bodies in two .and three dimensions					
	Moment of a force about a point and about an axis. Equilibrium of rigid body.					
	Analysis of trusses and frames.					
	1.The students should be able to define and describe the following basic concepts in mechanics					
	such as Space, Time, Mass, Force, Particle, Rigid body, Scalar, Vector, Free vector, Sliding					
	vector, Fixed vector, and perform calculations on summation, Subtraction, •Direction cosine					
	.Magnitude, Component, Unit vector, Vector decomposition					
	2. The students will be able describe and define the following components .					
	of Newton's Laws: First					
	law, Second law, Third law, Gravitation law.					
Module Learning	3. The students should demonstrate an understanding of the following					
Outcomes	:concepts relating to forces					
	Contact force, Body force, Concurrent force system, Resultant (Combination					
	·(of a force system					
مخرجات التعلم للمادة الدر اسبية	Decomposition of a force (rectangular and non-rectangular), Using triangle law to obtain the					
الدراسية	resultant will create a couple because forces in rigid body, mechanics are					
	sliding vectors, not					
	.free vectors					
	4.The student will be able to apply the cross product concepts to determine .moments					
	5. The student will be able to calculate the resultants of forces and couples					
	6.The students will learn the differences and similarities between 2D and 3D •systems. Additionally					
	the students should understand what complications are arise in studying 3D					
	systems, and what					
	is done to deal with these complications Indicative content includes the following.					
	. Definition of vectors in 2D and 3D, Physical examples, Analytical and graphical					
Indicative Contents	. Definition of vectors in 2D and 3D, Physical examples, Analytical and graphical					
المحتويات الإرشادية	. Scalar and vector products, Analytical methods and graphical interpretation					
	Resultant and equivalence of 2D force system, Analytical and graphical solutions					
	. Definition of moments and couples, Couples in 2D and 3D systems, Force systems					

	.with couples
	. Resultant and equivalence of 3D force system, Systems with couples Analytical . .solutions
	. Concept of free body diagram (FBD), Equilibrium of rigid bodies, Equations of
	equilibrium in
	2D and 3D space
	. Coefficients of friction, friction law, solving systems with friction
	Learning and Teaching Strategies
	استراتيجيات التعلم والتعليم
	.1 Active Learning: Encourage students to actively participate in the learning process by engaging them in problem-solving activities, group discussions, and hands-on experiments.
	.2Concept Mapping: Use concept maps to help students visualize the relationships between different concepts and ideas in engineering mechanics statics.
	.3Real-World Examples: Use real-world examples to help students understand the practical applications of engineering mechanics statics concepts.
	.4Multimedia Resources: Use multimedia resources such as videos, animations, and simulations to enhance student understanding of complex concepts.
	.5Peer Teaching: Encourage peer teaching by assigning group projects or activities that require students to teach each other.
Strategies	.6Practice Problems: Provide students with ample opportunities to practice solving problems related to engineering mechanics statics.
	.7Feedback and Assessment: Provide timely feedback and assessment on student performance to help them identify areas where they need improvement.
	.8 Scaffolded Learning: Break down complex concepts into smaller, more manageable parts and provide scaffolding support as needed.
	.9Differentiated Instruction: Tailor instruction to meet the diverse needs of students by providing differentiated instruction based on their learning styles, abilities, and interests.
	.10Reflection and Metacognition: Encourage students to reflect on their learning experiences and develop metacognitive skills that will help them become more effective learners in the future.

Student Workload (SWL)

الحمل الدراسي للطالب					
Structured SWL (h/sem) الحمل الدر اسي المنتظم للطالب خلال الفصل	63	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبو عيا	4.2		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	87	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	5.8		
Total SWL (h/sem) الحمل الدر اسي الكلي للطالب خلال الفصل	175				

	Module Evaluation تقييم المادة الدر اسية						
			Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Qui	zzes	5	25% (25)	All	LO #1, 2.3,4	
	Assign	line ments Works)	1	6% (6)			
	Onsite Assignments (Class Works)		1	5% (5)			
	Report		1	4% (4)			
	Lab 15% of the 40						
Summative	Midter	m Exam	2 hr	10% (10)	8	LO # 1,2,3	
Assessment	Final	Theory	3 hr	50% (50)	16	All	
60%	Exam 50%	Lab					
	Total assessment			Final Exam			
			100% (100 Marks)				

Delivery Plan (Weekly Syllabus)			
المنهاج الاسبوعي النظري			
Week	Week Material Covered		
Week 1	Definition of vectors in 2D and 3D, Physical examples		

Week 2	.Scalar and vector products, Analytical methods and graphical interpretation			
Week 3	Definition of moments and couples, Couples in 2D and 3D systems			
Week 4	.Force systems with couples			
Week 5	Resultant and equivalence of 2D force system			
Week 6	Resultant and equivalence of 3D force system			
Week 7	.Systems with couples Analytical solutions			
Week 8	Concept of free body diagram (FBD(
Week 9	Equations of equilibrium in D and 3D space2			
Week 10	Equilibrium of rigid bodies			
Week 11	Equilibrium of frames			
Week 12	Equilibrium of trusses			
Week 13	•Coefficients of friction			
Week 14	friction law			
Week 15	.solving systems with friction			
Week 16	Preparatory week before the final Exam			

Learning and Teaching Resources مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	R.C. Hibbeler, Engineering Mechanics: Statics, .Prentice Hall, 12th ed., 2010	Yes		
Recommended Texts				

	Grading Scheme					
مخطط الدرجات	مخطط الدرجات					
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
	B - Very Good	B - Very Good جید جدا		Above average with some errors		
Success Group	C - Good	جيد	70 - 79	Sound work with notable errors		
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group (0 – 49)	FX – Fail	راسب) قيد المعالجة((45-49)	More work required but credit awarded		

	F — Fail	راسب	(0-44)	Considerable amount of work required
a mark of 54.5 will be	rounded to 55, w e "near-pass fails'	hereas a mark of 5 ' so the only adjust	54.4 will be r	ne higher or lower full mark (for example rounded to 54. The University has a arks awarded by the original marker(s)